A shape optimization problem for the first mixed Steklov–Dirichlet eigenvalue

نویسندگان

چکیده

We consider a shape optimization problem for the first mixed Steklov–Dirichlet eigenvalues of domains bounded by two balls in two-point homogeneous space. give geometric proof which is motivated Newton’s shell theorem.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The first biharmonic Steklov eigenvalue: positivity preserving and shape optimization

We consider the Steklov problem for the linear biharmonic equation. We survey existing results for the positivity preserving property to hold. These are connected with the first Steklov eigenvalue. We address the problem of minimizing this eigenvalue among suitable classes of domains. We prove the existence of an optimal convex domain of fixed measure. Mathematics Subject Classification (2000)....

متن کامل

An Optimization Problem for the First Weighted Eigenvalue Problem plus a Potential

(1.2) I := inf {λ(g, V ) : g ∈ R(g0), V ∈ R(V0)} . where V0 and g0 are fixed potential and weight functions respectively with some precise hypotheses that we state below (see (H1) and (H2)) and R(V0), R(g0) are the classes of rearrangements of V0 and g0 respectively. This type of optimization problems for eigenvalues of the p−Laplacian have deserved a great deal of attention. We like to mention...

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

The ∞−Laplacian first eigenvalue problem

We review some results about the first eigenvalue of the infinity Laplacian operator and its first eigenfunctions in a general norm context. Those results are obtained in collaboration with several authors: V. Ferone, P. Juutinen and B. Kawohl (see [BFK], [BK1], [BJK] and [BK2]). In section 5 we make some remarks on the simplicity of the first eigenvalue of ∆∞: this will be the object of a join...

متن کامل

A mixed FEM for the quad-curl eigenvalue problem

The quad-curl problem arises in the study of the electromagnetic interior transmission problem and magnetohydrodynamics (MHD). In this paper, we study the quad-curl eigenvalue problem and propose a mixed method using edge elements. Assuming stringent regularity of the solution of the quadcurl source problem, we prove the convergence and show that the divergencefree condition can be bypassed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Global Analysis and Geometry

سال: 2021

ISSN: ['1572-9060', '0232-704X']

DOI: https://doi.org/10.1007/s10455-021-09756-7